Johnny Henderson - Boundary Value Problems for Systems of Differential Difference and Fractional Equations : Positive Solutions book EPUB, DOC, FB2
9780128036792 English 0128036796 Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions Discusses second order difference equations with multi-point boundary conditions Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions, In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of maths as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions Discusses second order difference equations with multi-point boundary conditions Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions
9780128036792 English 0128036796 Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions Discusses second order difference equations with multi-point boundary conditions Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions, In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of maths as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions Discusses second order difference equations with multi-point boundary conditions Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions